MODULAR PARAMETRIZATIONS OF CERTAIN ELLIPTIC CURVES

MATIJA KAZALICKI, YUICHI SAKAI, KOJI TASAKA

ABSTRACT. Kaneko and Sakai [11] recently observed that certain elliptic curves whose associated newforms (by the modularity theorem) are given by the etaquotients can be characterized by a particular differential equation involving modular forms and Ramanujan-Serre differential operator.

In this paper, we study certain properties of modular parametrization associated to the elliptic curves over \mathbb{Q} , and as a consequence we generalize and explain some of their findings.

1. Introduction

By the modularity theorem [4, 8], an elliptic curve E over \mathbb{Q} admits a modular parametrization $\Phi_E: X_0(N) \to E$ for some integer N. If N is the smallest such integer, then it is equal to the conductor of E and the pullback of the Néron differential of E under Φ_E is a rational multiple of $2\pi i f_E(\tau)$, where $f_E(\tau) \in S_2(\Gamma_0(N))$ is a newform with rational Fourier coefficients. The fact that the L-function of $f_E(\tau)$ coincides with the Hasse-Weil zeta function of E (which follows from Eichler-Shimura theory) is central to the proof of Fermat's last theorem, and is related to the Birch and Swinnerton-Dyer conjecture. In addition to this, modular parametrization is used for constructing rational points on elliptic curves, and appears in the Gross-Zagier formula [9].

In this paper, we study some general properties of Φ_E , and as a consequences we explain and generalize the results of Kaneko and Sakai from [11].

Kaneko and Sakai (inspired by the paper of Guerzhoy [10]) observed that certain elliptic curves whose associated newforms (by the modularity theorem) are given by the eta-quotients from the list of Martin and Ono [12] can be characterized by a particular differential equation involving holomorphic modular forms.

²⁰¹⁰ Mathematics Subject Classification. 11G05 (primary), 11F11, 11F30 (secondary). Key words and phrases. modular parametrization, modular forms, Ramanujan-Serre differential operator, modular degree.

To give an example of this phenomena, let $f_{20}(\tau) = \eta(\tau)^4 \eta(5\tau)^4$ be a unique newform of weight 2 on $\Gamma_0(20)$, where $\eta(\tau)$ is the Dedekind eta function $\eta(\tau) = q^{1/24} \prod_{n>0} (1-q^n)$, $q=e^{2\pi i\tau}$, and put $\Delta_{5,4}(\tau) = f_{20}(\tau/2)^2$. Then an Eisenstein series $Q_5(\tau)$ on $M_4(\Gamma_0(5))$ associated either to cusp $i\infty$ or to cusp 0 is a solution of the following differential equation

(1)
$$\partial_{5,4}(Q_5)^2 = Q_5^3 - \frac{89}{13}Q_5^2\Delta_{5,4} - \frac{3500}{169}Q_5\Delta_{5,4}^2 - \frac{125000}{2197}\Delta_{5,4}^3,$$

where $\partial_{5,4}(Q_5(\tau)) = \frac{1}{\pi i}Q_5(\tau)' - \frac{1}{\pi i}Q_5(\tau)\Delta_{5,4}(\tau)'/\Delta_{5,4}(\tau)$ is a Ramanujan-Serre differential operator. Throughout the paper, we use symbol ' to denote $\frac{d}{d\tau}$. This differential equation defines a parametrization of an elliptic curve $E: y^2 = x^3 - \frac{89}{13}x^2 - \frac{3500}{169}x - \frac{125000}{2197}$ by modular functions

$$x = \frac{Q_5(\tau)}{\Delta_{5,4}(\tau)}, \quad y = \frac{\partial_{5,4}(Q_5)(\tau)}{\Delta_{5,4}(\tau)^{3/2}},$$

and $f_{20}(\tau)$ is the newform associated to E. One finds that $\Delta_{5,4}(\tau) \in S_4(\Gamma_0(5))$, so curiously the modular forms appearing in this parametrization are modular for $\Gamma_0(5)$, although the conductor of E is 20.

Using the Eichler-Shimura theory, we generalize (1) to the arbitrary elliptic curve E of conductor 4N, $E: y^2 = x^3 + ax^2 + bx + c$, where $a, b, c \in \mathbb{Q}$, which admits a modular parametrization $\Phi: X \to E$ satisfying

$$\Phi^* \left(\frac{dx}{y} \right) = \pi i f_{4N}(\tau/2) d\tau.$$

Here X is the modular curve $\mathbb{H}/\left(\frac{1}{2} {0 \atop 0}\right)^{-1}\Gamma_0(4N)\left(\frac{1}{2} {0 \atop 0}\right)$, and $f_{4N}(\tau) \in S_2(\Gamma_0(4N))$ is a newform with rational Fourier coefficients associated to E. It follows from the modularity theorem that in any \mathbb{Q} -isomorphism class of elliptic curves there is an elliptic curve E admitting such parametrization (note that for $u \in \mathbb{Q}^{\times}$ the change of variables $x = u^2 X$ and $y = u^3 Y$ implies $\frac{dX}{Y} = u \frac{dx}{y}$).

To such Φ we associate a solution $Q(\tau) = x(\Phi(\tau))f_{4N}(\tau/2)^2$ of a differential equation

(2)
$$\partial_{N,4}(Q)^2 = Q^3 + aQ^2 \Delta_{N,4} + bQ \Delta_{N,4}^2 + c\Delta_{N,4}^3,$$

where $\Delta_{N,4}(\tau) = f_{4N}(\tau/2)^2$, and $\partial_{N,4}(Q(\tau)) = \frac{1}{\pi i}Q(\tau)' - \frac{1}{\pi i}Q(\tau)\Delta_{N,4}(\tau)'/\Delta_{N,4}(\tau)$.

We show in Corollary 13 that $f_{4N}(\tau/2)^2$ is modular for $\Gamma_0(N)$. In general the solution $Q(\tau)$ will not be holomorphic and will be modular only for $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}^{-1} \Gamma_0(4N) \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$, but if the preimage of the point at infinity of E under Φ is contained in cusps of X

and is invariant under the action of $\begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (acting on X by Möbius transformations), $Q(\tau)$ will be both holomorphic and modular for $\Gamma_0(N)$ (for more details see Proposition 6 and Theorem 8). Moreover, in Theorem 7 we show that there are only finitely many (up to isomorphism) elliptic curves E admitting Φ with these two properties.

We also obtain similar results generalizing the other examples from [11] that correspond to the elliptic curves over \mathbb{Q} with j-invariant 0 and 1728 (see the next section).

2. Main results

Throughout the paper, let N be a positive integer and $k \in \{4, 6, 8, 12\}$. Let E_k/\mathbb{Q} be an elliptic curve given by the short Weierstrass equation $y^2 = f_k(x)$, where

$$f_4(x) = x^3 + a_2x^2 + a_4x + a_6,$$

$$f_6(x) = x^3 + b_6,$$

$$f_8(x) = x^3 + c_4x,$$

$$f_{12}(x) = x^3 + d_6,$$

and $a_2, a_4, a_6, b_6, c_4, d_6 \in \mathbb{Q}$. Moreover, we assume $j(E_4) \neq 0, 1728$.

Let

$$f_{N,k}(\tau) \in S_2\left(\Gamma_0\left(\frac{k^2}{4}N\right)\right)$$

be a newform with rational Fourier coefficients, and let $\Gamma_k := \begin{pmatrix} \frac{2}{k} & 0 \\ 0 & 1 \end{pmatrix}^{-1} \Gamma_0(\frac{k^2}{4}N) \begin{pmatrix} \frac{2}{k} & 0 \\ 0 & 1 \end{pmatrix}$. Define

$$\Delta_{N,k}(\tau) := f_{N,k}(2\tau/k)^{k/2} \in S_k(\Gamma_k).$$

For $f(\tau) \in M_4^{\text{mer}}(\Gamma_k)$, we define the (Ramanujan-Serre) differential operator by

$$\partial_{N,k}(f(\tau)) = \frac{k}{4\pi i} f'(\tau) - \frac{1}{\pi i} f(\tau) \frac{\Delta'_{N,k}(\tau)}{\Delta_{N,k}(\tau)} \in M_6^{\text{mer}}(\Gamma_k).$$

Finally, assume that there is a meromorphic modular form $Q_k(\tau) \in M_4^{\text{mer}}(\Gamma_k)$, such that the corresponding differential equation holds

(3)

$$\partial_{N,4}(Q_4(\tau))^2 = Q_4(\tau)^3 + a_2 Q_4(\tau)^2 \Delta_{N,4}(\tau) + a_4 Q_4(\tau) \Delta_{N,4}(\tau)^2 + a_6 \Delta_{N,4}(\tau)^3$$

$$\partial_{N,6}(Q_6(\tau))^2 = Q_6(\tau)^3 + b_6 \Delta_{N,6}(\tau)^2$$

$$\partial_{N,8}(Q_8(\tau))^2 = Q_8(\tau)^3 + c_4 Q_8(\tau) \Delta_{N,8}(\tau)$$

$$\partial_{N,12}(Q_{12}(\tau))^2 = Q_{12}(\tau)^3 + d_6 \Delta_{N,12}(\tau).$$

Each of these four identities defines a modular parametrization $\Psi_k: X_k \to E_k$

$$\Psi_k(\tau) = \left(\frac{Q_k(\tau)}{\Delta_{N,k}(\tau)^{4/k}}, \frac{\partial_{N,k}(Q_k)(\tau)}{\Delta_{N,k}(\tau)^{6/k}}\right),\,$$

where X_k is the compactified modular curve \mathbb{H}/Γ_k .

Proposition 1. Let $\frac{dx}{y}$ be an invariant differential on E_k . Then

(4)
$$\Psi_k^* \left(\frac{dx}{y} \right) = \frac{4\pi i}{k} f_{N,k}(2\tau/k) d\tau.$$

In particular, the conductor of E_k is $\frac{k^2}{4}N$ and $f_{N,k}(\tau)$ is the cusp form associated to E_k by the modularity theorem.

Remark 2. Note that when k = 6, 8 or 12, $f_{N,k}(\tau)$ is a modular form with complex multiplication by the ring of integers of $\mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$ respectively.

Conversely, given a modular parametrization $\Phi_k: X_k \to E_k$ satisfying (4), we construct a differential equation (3) and its solution $Q_k(\tau)$ as follows.

Let x and y be functions on E_k satisfying Weierstrass equation $y^2 = f_k(x)$. Functions $x(\tau) := x \circ \Phi_k(\tau)$ and $y(\tau) := y \circ \Phi_k(\tau)$ satisfy $y(\tau)^2 = f_k(x(\tau))$. Moreover (4) implies that

(5)
$$\left(\frac{k}{4\pi i}x'(\tau)\right)^2 = f_{N,k}(2\tau/k)^2 y(\tau)^2 = \Delta_{N,k}(\tau)^{4/k} f_k(x(\tau)).$$

Define $Q_k(\tau) := x(\tau) \Delta_{N,k}(\tau)^{4/k}$.

Proposition 3. The following formula holds

$$\partial_{N,k}(Q_k(\tau))^2 = \Delta_{N,k}(\tau)^{12/k} f_k(x(\tau)).$$

In particular, $Q_k(\tau)$ is a solution of (3).

Remark 4. If we assume Manin's conjecture, the parametrization $\Phi_k : X_k \to E_k$ will satisfy condition (4) if E_k is the minimal model of the strong Weil curve.

Now we investigate conditions under which $Q_k(\tau)$ is holomorphic. The following lemma easily follows from the formula above.

Lemma 5. Assume that $\tau_0 \in X_k$ is a pole of $x(\tau)$. Then

$$ord_{\tau_0}(Q_k(\tau)) = \begin{cases} 0, & \text{if } \tau_0 \text{ is a cusp,} \\ -2, & \text{if } \tau_0 \in \mathbb{H}. \end{cases}$$

As a consequence, we have the following characterization of the holomorphicity of $Q_k(\tau)$ in terms of modular parametrization Φ_k . Denote by \mathcal{C} the set of cusps of X_k , and by \mathcal{O} the point at infinity of E_k .

Proposition 6. We have that $Q_k(\tau)$ is holomorphic if and only if $\Phi_k^{-1}(\mathcal{O}) \subset \mathcal{C}$.

In Section 3.2 we show that the degree of Φ_k (as a function of the conductor) grows faster than the total ramification index at cusps hence the following theorem holds.

Theorem 7. There are finitely many elliptic curves E/\mathbb{Q} (up to a \mathbb{Q} -isomorphism) that admit a modular parametrization $\Phi: X_k \to E$ with the property that $\Phi^{-1}(\mathcal{O}) \subset \mathcal{C}$. In particular, there are finitely many elliptic curves E_k (up to a \mathbb{Q} -isomorphism) for which $Q_k(\tau)$ (which satisfy equation (3)) is holomorphic.

Define $A = \begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. It is easy to see that Γ_k is generated by $\Gamma_0(N)$ and A and T (Lemma 10), hence $Q_k(\tau)$ is modular for $\Gamma_0(N)$ if and only if it is invariant under the action of slash operators |A| and |T|. The following theorem describes the modularity in terms of parametrization Φ_k .

Theorem 8. If $\Phi_k^{-1}(\mathcal{O})$ is invariant under A and T, then $Q_k(\tau)$ is modular for $\Gamma_0(N)$.

3. Proofs

3.1. Proof of Proposition 1 and Proposition 3.

Proof of Proposition 1.

$$\Psi_{k}^{*}\left(\frac{dx}{y}\right) = \frac{d}{d\tau} \left(\frac{Q_{k}(\tau)}{\Delta_{N,k}(\tau)^{4/k}}\right) \frac{\Delta_{N,k}(\tau)^{6/k}}{\partial_{N,k}(Q_{k})(\tau)} d\tau
= \frac{\frac{d}{d\tau}Q_{k}(\tau)f_{N,k}(2\tau/k)^{2} - \frac{d}{d\tau}f_{N,k}(2\tau/k)^{2}Q_{k}(\tau)}{f_{N,k}(2\tau/k)^{4}} \frac{f_{N,k}(2\tau/k)^{3}}{\frac{k}{4\pi i}\frac{d}{d\tau}Q_{k}(\tau) - Q_{k}(\tau)\frac{k\frac{d}{d\tau}f_{N,k}(2\tau/k)^{k/2}}{4\pi i f_{N,k}(2\tau/k)^{k/2}}} d\tau
= \frac{4\pi i}{k}f_{N,k}(2\tau/k)d\tau.$$

Proof of Proposition 3. By definition,

$$\partial_{N,k}(Q_k(\tau)) = \frac{k}{4\pi i} (x(\tau)\Delta_{N,k}(\tau)^{4/k})' - \frac{1}{\pi i} x(\tau)\Delta_{N,k}(\tau)^{4/k} \frac{\Delta'_{N,k}(\tau)}{\Delta_{N,k}(\tau)}$$
$$= \frac{k}{4\pi i} x'(\tau)\Delta_{N,k}(\tau)^{4/k}.$$

Hence the claim follows from (5).

3.2. **Proof of Theorem 7.** Let $e_x \in \mathbb{Z}$ be the ramification index of Φ_k at $x \in X_k$, and let $\deg(\Phi_k)$ be the degree of Φ_k . It follows from the Hurwitz formula that $\sum_{x \in X_k} (e_x - 1) = 2g - 2$, where g is the genus of X_k (note that the genus of X_k is equal to the genus of $\Gamma_0(\frac{k^2}{4}N)$). Therefore $\Phi_k^{-1}(\mathcal{O}) \subset \mathcal{C}$ implies

(6)
$$\deg(\Phi_k) \le \sum_{x \in \mathcal{C}} e_x \le 2g - 2 + \#\mathcal{C}.$$

In [15], Watkins proved a lower bound for the degree of modular parametrization Φ of an elliptic curve over $\mathbb Q$ of conductor M

$$\deg(\Phi) \ge \frac{M^{7/6}}{\log M} \cdot \frac{1/10300}{\sqrt{0.02 + \log \log M}}.$$

On the other hand, an upper bound (see [6]) for the genus g of $X_0(M)$ is

$$g < M \frac{e^{\gamma}}{2\pi^2} (\log \log M + 2/\log \log M) \text{ for } M > 2,$$

where $\gamma = 0.5772...$ is Euler's constant.

If we use a trivial bound $\#\mathcal{C} \leq M$, an easy calculation shows that (6) can not hold for curves E_k of conductor greater than 10^{50} . Therefore, we have proved the Theorem 7

- **Remark 9.** If we assume that ramification index at cusps is bounded by 24 (see a discussion in the paper of Brunault [5]), and if we use Abramovich [1] lower bound for modular degree $deg(\Phi) \ge 7M/1600$, we obtain that (6) can not hold for elliptic curves of conductor greater than 2^{19} .
- 3.3. **Proof of Theorem 8.** In this section we investigate conditions on modular parametrization Φ_k under which $\Delta_{N,k}(\tau)$ and $Q_k(\tau)$, initially modular for Γ_k , are modular for $\Gamma_0(N)$.

For $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$, and a (meromorphic) modular form $f(\tau)$ of weight l, we define the usual slash operator as $f(\tau)|_l S := f(S\tau)(c\tau + d)^{-l}$, where $S\tau = \frac{a\tau + b}{c\tau + d}$. Define $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix}$.

Lemma 10. Group $\Gamma_0(\frac{k}{2}N)$ is generated by Γ_k and T, while $\Gamma_0(N)$ is generated by $\Gamma_0(\frac{k}{2}N)$ and A.

Proof. To prove the first statement, let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(\frac{k}{2}N)$. Then $\gcd(a, \frac{k}{2}) = 1$, and there is $r \in \mathbb{Z}$ such that $ar \equiv -b \mod \frac{k}{2}$. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} T^r \in \Gamma_k = \Gamma_0(\frac{k}{2}N) \cap \Gamma^0(\frac{k}{2})$, and the claim follows.

Second statement is proved analogously.

Therefore, to prove that $\Delta_{N,k}(\tau)$ and $Q_k(\tau)$ are modular for $\Gamma_0(N)$ it suffices to show their invariance under the slash operators |T| and |A|.

Lemma 11. Matrices A and T normalize Γ_k .

Proof. Let $\binom{a}{c}\binom{b}{d} \in \Gamma_k = \Gamma_0(\frac{k}{2}N) \cap \Gamma^0(\frac{k}{2})$. Then $\frac{k}{2}N|c$ and $\frac{k}{2}|c$, and $ad \equiv 1 \pmod{\frac{k}{2}}$. In particular, since $\frac{k}{2} \in \{2, 3, 4, 6\}$, it follows that $a \equiv d \pmod{\frac{k}{2}}$.

Since

$$\begin{array}{lcl} A^{-1} \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) A & = & \left(\begin{smallmatrix} a+bN & b \\ -aN-bN^2+c+dN & -bN+d \end{smallmatrix} \right), \\ T^{-1} \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) T & = & \left(\begin{smallmatrix} a-c & a+b-c-d \\ c & c+d \end{smallmatrix} \right), \end{array}$$

the claim follows.

For a prime p, define the Hecke operator T_p as a double coset operator $\Gamma_k \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \Gamma_k$ acting on the space of cusp forms on Γ_k . Slash operators |A| and |T| correspond to $\Gamma_k A \Gamma_k$ and $\Gamma_k T \Gamma_k$ (see Chapter 5 of [8]).

Define the Fricke involution $|_2B$ on $S_2(\Gamma_k)$ by the matrix $B:=\begin{pmatrix} 0 & -\frac{k}{2} \\ \frac{k}{2}N & 0 \end{pmatrix}$. Note that $|_2B$ is the conjugate of the usual Fricke involution on $\Gamma_0(\frac{k^2}{4}N)$. In particular, B normalizes Γ_k , and $|_2B$ commutes with all the Hecke operators T_p , $p \nmid \frac{k^2}{4}N$. Hence, $f_{N,k}(2\tau/k)|_2B = \lambda_{k,N}f_{N,k}(2\tau/k)$ for some $\lambda_{k,N} = \pm 1$.

Lemma 12. The following are true.

$$f_{N,k}(2\tau/k)|_2T = e^{4\pi i/k} f_{N,k}(2\tau/k),$$

$$|f_{N,k}(2\tau/k)|_2 A = e^{-4\pi i/k} f_{N,k}(2\tau/k).$$

In particular, $|_2A$ and $|_2B$ have order $\frac{k}{2}$ when acting on $f_{N,k}(2\tau/k)$.

Proof. A key observation is that the Fourier coefficients of $f_{N,k}(\tau)$ are supported at integers that are 1 mod $\frac{k}{2}$. This implies

$$f_{N,k}(2\tau/k)|_2 T = e^{4\pi i/k} f_{N,k}(2\tau/k).$$

When k = 4 (and k = 12) this is a consequence of the general fact that $a_f(2) = 0$ whenever $f(\tau) = \sum a_f(n)q^n$ is a newform of level divisible by 4 (see [13], p.29). In the other three cases, $f_{N,k}(\tau)$ is a modular form with complex multiplication by the ring of

integers of $\mathbb{Q}(\sqrt{-3})$ or $\mathbb{Q}(\sqrt{-1})$, hence its Fourier coefficients $a_{f_{N,k}}(p)$ are zero when p is an inert prime (i.e. $p \equiv 2 \pmod 3$) or $p \equiv 3 \pmod 4$) respectively). Multiplicativity of the Fourier coefficients then implies the observation.

On the other hand $A = BT^{-1}B^{-1}$, therefore

$$f_{N,k}(2\tau/k)|_{2}A = (f_{N,k}(2\tau/k)|_{2}B)|_{2}T^{-1}|_{2}B^{-1} = (\lambda_{k,N}f_{N,k}(2\tau/k)|_{2}T^{-1})|_{2}B^{-1}$$
$$= \lambda_{k,N}\lambda_{k,N}^{-1}e^{-4\pi i/k}f_{N,k}(2\tau/k).$$

Corollary 13. We have that

- a) $\Delta_{N,k}(\tau) \in S_k(\Gamma_0(N)),$
- b) $\Delta_{N,8}(\tau)^{1/2}|_4 A = -\Delta_{N,8}(\tau)^{1/2}$ and $\Delta_{N,8}(\tau)^{1/2}|_4 T = -\Delta_{N,8}(\tau)^{1/2}$,
- c) $\Delta_{N,12}(\tau)^{1/2}|_{6}A = -\Delta_{N,12}(\tau)^{1/2}$ and $\Delta_{N,12}(\tau)^{1/2}|_{6}T = -\Delta_{N,12}(\tau)^{1/2}$.

We now recall some basic facts about Jacobians of modular curves. For more details see Chapter 6 of [8]. Denote by $Jac(X_k)$ the Jacobian of X_k . We will view it either as $S_2(\Gamma_k)^{\wedge}/H_1(X_k,\mathbb{Z})$ (where $\gamma \in H_1(X_k,\mathbb{Z})$ acts on $f(\tau) \in S_2(\Gamma_k)$ by $f(\tau) \mapsto \int_{\gamma} f(\tau)d\tau$), or as the Picard group $Pic^0(X_k)$ of X_k , which is the quotient $Div^0(X_k)/Div^l(X_k)$ of the degree zero divisors of X_k modulo principal divisors. If x_0 is a base point in X_k then X_k embeds into its Picard group under the Abel-Jacobi map

$$X_k \to Pic^0(X_k), \qquad x \mapsto (x) - (x_0),$$

where $(x) - (x_0)$ denotes the equivalence class of divisors $(x) - (x_0) + Div^l(X_k)$.

It is known that the parametrization $\Phi_k: X_k \to E_k$ can be factored as

(7)
$$X_k \hookrightarrow Jac(X_k) \xrightarrow{\psi_k} \tilde{E}_k \xrightarrow{\phi_k} E_k.$$

Here $X_k \hookrightarrow Jac(X_k)$ is the Abel-Jacobi map (for some base point $x_0 \in X_k$), ϕ_k is a rational isogeny, and \tilde{E}_k (together with ψ_k) is the strong Weil curve associated to the newform $f_{N,k}(2\tau/k)$ via Eichler-Shimura construction as follows.

Let V_k be a \mathbb{C} -span of $f_{N,k}(2\tau/k) \in S_2(\Gamma_k)$, and define $\Lambda_k := H_1(X_k)|V_k$. Restriction to V_k gives a homomorphism ψ_k

$$Jac(X_k) \to V_k^{\wedge}/\Lambda_k \cong \tilde{E_k}.$$

Here V_k^{\wedge}/Λ_k is a one-dimensional complex torus isomorphic to the rational elliptic curve \tilde{E}_k with the Weierstrass equation $\tilde{E}_k: y^2 = x^3 - \frac{g_2(\Lambda_k)}{4}x - \frac{g_3(\Lambda_k)}{4}$.

Let S be either A or T. Since by Lemma 11 S normalizes Γ_k , we can define the action of S on $Jac(X_k)$ in two equivalent ways: for $\phi \in S_2(\Gamma_k)^{\wedge}/H_1(X_k, \mathbb{Z})$ and $f(\tau) \in S_2(\Gamma_k)$ let $S(\phi)(f(\tau)) := \phi(f(\tau)|_2 S)$, or for $P = (x) - (x_0) \in Pic^0(X_k)$ let $S(P) = (Sx) - (Sx_0)$. Now Lemma 12 implies that the action of S on $Jac(X_k)$ descends to the automorphism of \tilde{E}_k of the order $\frac{k}{2}$.

Recall that x and y are functions on E_k satisfying Weierstrass equation $y^2 = f_k(x)$, and that $x(\tau) = x \circ \Phi_k(\tau)$ and $y(\tau) = y \circ \Phi_k(\tau)$ are modular functions on X_k .

Proposition 14. Let S be either A or T. If $\Phi_k^{-1}(\mathcal{O})$ is invariant under A and T, then

a)
$$x(\tau)|S=\begin{cases} x(\tau), & \text{if }k=4,\\ -x(\tau), & \text{if }k=8. \end{cases}$$
 b)
$$y(\tau)|S=\begin{cases} y(\tau), & \text{if }k=6,\\ -y(\tau), & \text{if }k=12, \end{cases}$$

Proof. For $P \in E_k$, we define the $S(P) := \phi_k(S(\tilde{P}))$ for any $\tilde{P} \in \phi_k^{-1}(P)$. It is well defined since S-invariance of $\Phi_k^{-1}(\mathcal{O})$ implies the S-invariance of $Ker(\phi_k)$. We have that $\phi_k(S(P)) = S(\phi_k(P))$, hence S is an automorphism of E_k .

Let x_0 be a base point of Abel-Jacobi map in (7). Then $x_0 \in \Phi_k^{-1}(\mathcal{O})$, hence $\phi_k \circ \psi_k$ maps $(Sx_0) - (x_0)$ to \mathcal{O} in E_k . In particular, for $x \in X_k$ we have

(8)
$$\Phi_k(Sx) = \phi_k \circ \psi_k((Sx) - (x_0)) = \phi_k \circ \psi_k((Sx) - (Sx_0)) = S(\Phi_k(x)).$$

Assume first that k = 4. Then $j(E_4) \neq 0$, 1728, and the automorphism group of E_4 is of order 2 generated by $(x, y) \mapsto (x, -y)$. In particular x(S(P)) = x(P), for every $P \in E_4$.

If k = 8, then S is an automorphism of order $\frac{k}{2} = 4$ of \tilde{E}_k , hence $j(\tilde{E}_k) = 1728$, and $g_3(\Lambda_8) = 0$. Moreover ϕ_k is isomorphism (defined over \mathbb{Q}), which implies that S is an isomorphism of order 4 of E_8 as well. The automorphism group is generated by $(x,y) \mapsto (-x,iy)$, hence x(S(P)) = -x(P) for every $P \in E_8$.

If k = 6 or 12, then $j(\tilde{E}_k) = 0$, $g_2(\Lambda_k) = 0$, and ϕ_k is an isomorphism (defined over \mathbb{Q}). Therefore, S has order 3 on E_k if k = 6, and order 6 if k = 12. The automorphism group is generated by $(x, y) \mapsto (e^{2\pi i/3}x, -y)$, and in particular y(S(P)) = y(P) if k = 6, and y(S(P)) = -y(P) if k = 12, for every $P \in E_k$.

Now (8) implies

 $x(\tau)|S = x(S\tau) = x(\Phi_k(S\tau)) = x(S(\Phi_k(\tau)))$ and $y(\tau)|S = y(S\tau) = y(\Phi_k(S\tau)) = y(S(\Phi_k(\tau)))$, and the claim follows from the previous paragraph.

We need the following technical lemma. Recall that $Q_k(\tau) := x(\tau)\Delta_{N,k}(\tau)^{4/k}$.

Lemma 15. If $\partial_{N,k}(Q_k(\tau)) \in M_6^{mer}(\Gamma_0(N))$, then $Q_k(\tau) \in M_4^{mer}(\Gamma_0(N))$.

Proof. As in the proof of Proposition 3, we have that $\partial_{N,k}(Q_k(\tau)) = \frac{k}{4\pi i}x'(\tau)\Delta_{N,k}(\tau)^{4/k} = \frac{k}{4\pi i}\frac{x'(\tau)}{x(\tau)}Q_k(\tau)$. Let S be either A or T. Then $(x(S\tau))' = x'(\tau)|_2S$, and the invariance of $\frac{x'(\tau)}{x(\tau)}$ under S (hence under $\Gamma_0(N)$) follows from the fact that $x(\tau)$ is an eigenfunction for S, which follows from the proof of Proposition 14.

Since $Q_k(\tau) := x(\tau)\Delta_{N,k}(\tau)^{4/k}$, the Theorem 8 for k=4 and 8 now follows from a) and b) of Corollary 13 and a) of Proposition 14, while k=6 and 12 case follows from $\partial_{N,k}(Q_k)(\tau) = y(\tau)\Delta_{N,k}(\tau)^{6/k}$ together with a) and c) of Corollary 13, b) of Proposition 14 and Lemma 15.

4. Example

Let

$$f_{19,4}(\tau) = \sum_{n=1}^{\infty} a(n)q^n = q + 2q^3 - q^5 - 3q^7 + q^9 + \cdots$$

be a unique newform in $S_2(\Gamma_0(76))$, and denote by $\Delta_{19,4}(\tau) = f_{19,4}(\tau/2)^2 \in S_4(\Gamma_0(19))$. Set $\Gamma = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}^{-1} \Gamma_0(76) \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$. For $\tau \in \overline{\mathbb{H}}$ we define

$$\Psi(\tau) = \pi i \int_{i\infty}^{\tau} f(z/2) dz.$$

For $\gamma \in \Gamma$ and $\tau \in \overline{\mathbb{H}}$, define $\omega(\gamma) := \Psi(\gamma\tau) - \Psi(\tau)$. One easily checks that $\frac{d}{d\tau}\omega(\tau) = 0$, hence $\omega(\gamma)$ does not depend on τ . Denote by Λ the image of Γ under ω . By Eichler-Shimura theory Λ is a lattice, and $\Psi(\tau)$ induces a parametrization $X := \mathbb{H}/\Gamma \to \mathbb{C}/\Lambda$. The complex torus \mathbb{C}/Λ is isomorphic to $E : y^2 = x^3 - \frac{g_2(\Lambda)}{4}x - \frac{g_3(\Lambda)}{4}$ by the map given by Weierstrass \wp -function and its derivative, $z \longmapsto (\wp(z, \Lambda), \wp'(z, \Lambda)/2)$, thus by composing these two maps we obtain a modular parametrization $\Phi : X \to E$.

One finds that generators ω_1 and ω_2 of Λ are

$$\omega_1 = 1.1104197465122..., \quad \omega_2 = 0.5552098732561... + 2.1752061725591... \times i.$$

Moreover, $g_2(\Lambda) = \frac{256}{3}$ and $g_3(\Lambda) = \frac{4112}{27}$, hence it follows from Proposition 3 that

$$Q(\tau) = \Delta_{19,4}(\tau)\wp(\Psi(\tau),\Lambda) = 1 + \frac{1}{3}\left(8q + 8q^2 + 64q^3 + 232q^4 + 336q^5 + 256q^6 + 512q^7 + \cdots\right)$$

satisfies a differential equation

(9)
$$\partial_{19,4}(Q)^2 = Q^3 - \frac{64}{3}Q\Delta_{19,4}^2 - \frac{1028}{27}\Delta_{19,4}^3.$$

One finds that

$$GCD(\{p+1-a(p): p \text{ prime}, p \equiv 1 \pmod{76}\}) = 1,$$

hence it follows from the special case of Drinfeld-Manin theorem (see Theorem 2.20 in [7]) that $\Psi(\tau)$ maps cusps of X to the lattice Λ , or equivalently that Φ maps cusps of X to the point at infinity of E. Modular curve X has six cusps, and one can check (for example by using software package Magma) that the degree of Φ is six, therefore the conditions of Proposition 6 and Theorem 8 are satisfied, and we conclude that $Q(\tau) \in M_4(\Gamma_0(19))$.

References

- [1] D. Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices (1996), no. 20, 1005–1011.
- [2] A. Atkin, J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970) 134–160.
- [3] B. J. Birch, H. P. F. Swinnerton-Dyer, *Elliptic curves and modular functions*, Modular functions of one variable IV, Lecture Notes in Mathematics, 1975, Volume 476/1975, 2–32,
- [4] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic).
- [5] F. Brunault, On the ramification of modular parametrization at the cusps, arXiv:1206.2621v1
- [6] J. A. Csirik, J. L. Wetherell, M. E. Zieve On the genera of $X_0(N)$, arXiv:math/0006096v2
- [7] H. Darmon, *Rational points on modular elliptic curves*, CBMS Regional Conference Series in Mathematics, AMS, **101**, (2004)
- [8] F. Diamond, J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005.
- [9] B. Gross, D. Zagier, Heegner Points and Derivatives of L-series, Invent. Math. 84 (1986) pp. 225–320.
- [10] P. Guerzhoy, The Ramanujan differential operator, a certain CM elliptic curve and Kummer congruences, Compositio Mathematica, 141 (2005), no. 3, 583–590.
- [11] M. Kaneko, Y. Sakai, The Ramanujan-Serre differential operators and certain elliptic curves, preprint.

- [12] Y. Martin, K. Ono, Eta-quotients and elliptic curves, Proc. Amer. Math. Soc., 125 (1997), 3169–3176.
- [13] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics, AMS, 102, (2003)
- [14] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572.
- [15] M. Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002),no.4, 487–502.