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Abstract. Kaneko and Sakai [11] recently observed that certain elliptic curves

whose associated newforms (by the modularity theorem) are given by the eta-

quotients can be characterized by a particular differential equation involving mod-

ular forms and Ramanujan-Serre differential operator.

In this paper, we study certain properties of modular parametrization associated

to the elliptic curves over Q, and as a consequence we generalize and explain some

of their findings.

1. Introduction

By the modularity theorem [4, 8], an elliptic curve E over Q admits a modular

parametrization ΦE : X0(N) → E for some integer N . If N is the smallest such

integer, then it is equal to the conductor of E and the pullback of the Néron differential

of E under ΦE is a rational multiple of 2πifE(τ), where fE(τ) ∈ S2(Γ0(N)) is a

newform with rational Fourier coefficients. The fact that the L-function of fE(τ)

coincides with the Hasse-Weil zeta function of E (which follows from Eichler-Shimura

theory) is central to the proof of Fermat’s last theorem, and is related to the Birch and

Swinnerton-Dyer conjecture. In addition to this, modular parametrization is used for

constructing rational points on elliptic curves, and appears in the Gross-Zagier formula

[9].

In this paper, we study some general properties of ΦE, and as a consequences we

explain and generalize the results of Kaneko and Sakai from [11].

Kaneko and Sakai (inspired by the paper of Guerzhoy [10]) observed that certain

elliptic curves whose associated newforms (by the modularity theorem) are given by

the eta-quotients from the list of Martin and Ono [12] can be characterized by a

particular differential equation involving holomorphic modular forms.
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To give an example of this phenomena, let f20(τ) = η(τ)4η(5τ)4 be a unique

newform of weight 2 on Γ0(20), where η(τ) is the Dedekind eta function η(τ) =

q1/24
∏

n>0(1− qn), q = e2πiτ , and put ∆5,4(τ) = f20(τ/2)
2. Then an Eisenstein series

Q5(τ) on M4(Γ0(5)) associated either to cusp i∞ or to cusp 0 is a solution of the

following differential equation

∂5,4(Q5)
2 = Q3

5 −
89

13
Q2

5∆5,4 −
3500

169
Q5∆

2
5,4 −

125000

2197
∆3

5,4,(1)

where ∂5,4(Q5(τ)) =
1
πi
Q5(τ)

′ − 1
πi
Q5(τ)∆5,4(τ)

′/∆5,4(τ) is a Ramanujan-Serre differ-

ential operator. Throughout the paper, we use symbol ′ to denote d
dτ
. This differential

equation defines a parametrization of an elliptic curve E : y2 = x3− 89
13
x2− 3500

169
x− 125000

2197

by modular functions

x =
Q5(τ)

∆5,4(τ)
, y =

∂5,4(Q5)(τ)

∆5,4(τ)3/2
,

and f20(τ) is the newform associated to E. One finds that ∆5,4(τ) ∈ S4(Γ0(5)), so

curiously the modular forms appearing in this parametrization are modular for Γ0(5),

although the conductor of E is 20.

Using the Eichler-Shimura theory, we generalize (1) to the arbitrary elliptic curve

E of conductor 4N , E : y2 = x3 + ax2 + bx + c, where a, b, c ∈ Q, which admits a

modular parametrization Φ : X → E satisfying

Φ∗
(
dx

y

)
= πif4N(τ/2)dτ.

Here X is the modular curve H/
(

1
2

0
0 1

)−1

Γ0(4N)
(

1
2

0
0 1

)
, and f4N(τ) ∈ S2(Γ0(4N))

is a newform with rational Fourier coefficients associated to E. It follows from the

modularity theorem that in any Q-isomorphism class of elliptic curves there is an

elliptic curve E admitting such parametrization (note that for u ∈ Q× the change of

variables x = u2X and y = u3Y implies dX
Y

= udx
y
).

To such Φ we associate a solution Q(τ) = x(Φ(τ))f4N(τ/2)
2 of a differential equa-

tion

∂N,4(Q)
2 = Q3 + aQ2∆N,4 + bQ∆2

N,4 + c∆3
N,4,(2)

where ∆N,4(τ) = f4N(τ/2)
2, and ∂N,4(Q(τ)) =

1
πi
Q(τ)′ − 1

πi
Q(τ)∆N,4(τ)

′/∆N,4(τ).

We show in Corollary 13 that f4N(τ/2)
2 is modular for Γ0(N). In general the solu-

tion Q(τ) will not be holomorphic and will be modular only for
(

1
2

0
0 1

)−1

Γ0(4N)
(

1
2

0
0 1

)
,

but if the preimage of the point at infinity of E under Φ is contained in cusps of X



MODULAR PARAMETRIZATIONS OF CERTAIN ELLIPTIC CURVES 3

and is invariant under the action of ( 1 0
N 1 ) and ( 1 1

0 1 ) (acting on X by Möbius trans-

formations), Q(τ) will be both holomorphic and modular for Γ0(N) (for more details

see Proposition 6 and Theorem 8). Moreover, in Theorem 7 we show that there are

only finitely many (up to isomorphism) elliptic curves E admitting Φ with these two

properties.

We also obtain similar results generalizing the other examples from [11] that corre-

spond to the elliptic curves over Q with j-invariant 0 and 1728 (see the next section).

2. Main results

Throughout the paper, let N be a positive integer and k ∈ {4, 6, 8, 12}. Let Ek/Q
be an elliptic curve given by the short Weierstrass equation y2 = fk(x), where

f4(x) = x3 + a2x
2 + a4x+ a6,

f6(x) = x3 + b6,

f8(x) = x3 + c4x,

f12(x) = x3 + d6,

and a2, a4, a6, b6, c4, d6 ∈ Q. Moreover, we assume j(E4) ̸= 0, 1728.

Let

fN,k(τ) ∈ S2

(
Γ0

(
k2

4
N

))
be a newform with rational Fourier coefficients, and let Γk :=

(
2
k

0
0 1

)−1

Γ0(
k2

4
N)

(
2
k

0
0 1

)
.

Define

∆N,k(τ) := fN,k(2τ/k)
k/2 ∈ Sk(Γk).

For f(τ) ∈Mmer
4 (Γk), we define the (Ramanujan-Serre) differential operator by

∂N,k(f(τ)) =
k

4πi
f ′(τ)− 1

πi
f(τ)

∆′
N,k(τ)

∆N,k(τ)
∈Mmer

6 (Γk).

Finally, assume that there is a meromorphic modular form Qk(τ) ∈Mmer
4 (Γk), such

that the corresponding differential equation holds

(3)

∂N,4(Q4(τ))
2 = Q4(τ)

3 + a2Q4(τ)
2∆N,4(τ) + a4Q4(τ)∆N,4(τ)

2 + a6∆N,4(τ)
3

∂N,6(Q6(τ))
2 = Q6(τ)

3 + b6∆N,6(τ)
2

∂N,8(Q8(τ))
2 = Q8(τ)

3 + c4Q8(τ)∆N,8(τ)

∂N,12(Q12(τ))
2 = Q12(τ)

3 + d6∆N,12(τ).
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Each of these four identities defines a modular parametrization Ψk : Xk → Ek

Ψk(τ) =

(
Qk(τ)

∆N,k(τ)4/k
,
∂N,k(Qk)(τ)

∆N,k(τ)6/k

)
,

where Xk is the compactified modular curve H/Γk.

Proposition 1. Let dx
y

be an invariant differential on Ek. Then

(4) Ψ∗
k

(
dx

y

)
=

4πi

k
fN,k(2τ/k)dτ.

In particular, the conductor of Ek is k2

4
N and fN,k(τ) is the cusp form associated to

Ek by the modularity theorem.

Remark 2. Note that when k = 6, 8 or 12, fN,k(τ) is a modular form with complex

multiplication by the ring of integers of Q(
√
−3), Q(

√
−1) and Q(

√
−3) respectively.

Conversely, given a modular parametrization Φk : Xk → Ek satisfying (4), we

construct a differential equation (3) and its solution Qk(τ) as follows.

Let x and y be functions on Ek satisfying Weierstrass equation y2 = fk(x). Func-

tions x(τ) := x ◦ Φk(τ) and y(τ) := y ◦ Φk(τ) satisfy y(τ)
2 = fk(x(τ)). Moreover (4)

implies that

(5)

(
k

4πi
x′(τ)

)2

= fN,k(2τ/k)
2y(τ)2 = ∆N,k(τ)

4/kfk(x(τ)).

Define Qk(τ) := x(τ)∆N,k(τ)
4/k.

Proposition 3. The following formula holds

∂N,k(Qk(τ))
2 = ∆N,k(τ)

12/kfk(x(τ)).

In particular, Qk(τ) is a solution of (3).

Remark 4. If we assume Manin’s conjecture, the parametrization Φk : Xk → Ek will

satisfy condition (4) if Ek is the minimal model of the strong Weil curve.

Now we investigate conditions under which Qk(τ) is holomorphic. The following

lemma easily follows from the formula above.

Lemma 5. Assume that τ0 ∈ Xk is a pole of x(τ). Then

ordτ0(Qk(τ)) =

0, if τ0 is a cusp,

−2, if τ0 ∈ H.
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As a consequence, we have the following characterization of the holomorphicity of

Qk(τ) in terms of modular parametrization Φk. Denote by C the set of cusps of Xk,

and by O the point at infinity of Ek.

Proposition 6. We have that Qk(τ) is holomorphic if and only if Φ−1
k (O) ⊂ C.

In Section 3.2 we show that the degree of Φk (as a function of the conductor) grows

faster than the total ramification index at cusps hence the following theorem holds.

Theorem 7. There are finitely many elliptic curves E/Q (up to a Q-isomorphism)

that admit a modular parametrization Φ : Xk → E with the property that Φ−1(O) ⊂ C.
In particular, there are finitely many elliptic curves Ek (up to a Q-isomorphism)

for which Qk(τ) (which satisfy equation (3)) is holomorphic.

Define A = ( 1 0
N 1 ) and T = ( 1 1

0 1 ). It is easy to see that Γk is generated by Γ0(N) and

A and T (Lemma 10), hence Qk(τ) is modular for Γ0(N) if and only if it is invariant

under the action of slash operators |A and |T . The following theorem describes the

modularity in terms of parametrization Φk.

Theorem 8. If Φ−1
k (O) is invariant under A and T , then Qk(τ) is modular for Γ0(N).

3. Proofs

3.1. Proof of Proposition 1 and Proposition 3.

Proof of Proposition 1.

Ψ∗
k

(
dx
y

)
= d

dτ

(
Qk(τ)

∆N,k(τ)4/k

)
∆N,k(τ)

6/k

∂N,k(Qk)(τ)
dτ

=
d
dτ
Qk(τ)fN,k(2τ/k)

2− d
dτ
fN,k(2τ/k)

2Qk(τ)

fN,k(2τ/k)4
fN,k(2τ/k)

3

k
4πi

d
dτ
Qk(τ)−Qk(τ)

k d
dτ

fN,k(2τ/k)k/2

4πifN,k(2τ/k)k/2

dτ

= 4πi
k
fN,k(2τ/k)dτ.

□

Proof of Proposition 3. By definition,

∂N,k(Qk(τ)) = k
4πi

(x(τ)∆N,k(τ)
4/k)′ − 1

πi
x(τ)∆N,k(τ)

4/k∆
′
N,k(τ)

∆N,k(τ)

= k
4πi
x′(τ)∆N,k(τ)

4/k.

Hence the claim follows from (5). □
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3.2. Proof of Theorem 7. Let ex ∈ Z be the ramification index of Φk at x ∈
Xk, and let deg(Φk) be the degree of Φk. It follows from the Hurwitz formula that∑

x∈Xk
(ex − 1) = 2g − 2, where g is the genus of Xk (note that the genus of Xk is

equal to the genus of Γ0(
k2

4
N)). Therefore Φ−1

k (O) ⊂ C implies

(6) deg(Φk) ≤
∑
x∈C

ex ≤ 2g − 2 + #C.

In [15], Watkins proved a lower bound for the degree of modular parametrization Φ

of an elliptic curve over Q of conductor M

deg(Φ) ≥ M7/6

logM
· 1/10300√

0.02 + log logM
.

On the other hand, an upper bound (see [6]) for the genus g of X0(M) is

g < M
eγ

2π2
(log logM + 2/ log logM) for M > 2,

where γ = 0.5772 . . . is Euler’s constant.

If we use a trivial bound #C ≤M , an easy calculation shows that (6) can not hold

for curves Ek of conductor greater than 1050. Therefore, we have proved the Theorem

7.

Remark 9. If we assume that ramification index at cusps is bounded by 24 (see a

discussion in the paper of Brunault [5]), and if we use Abramovich [1] lower bound for

modular degree deg(Φ) ≥ 7M/1600, we obtain that (6) can not hold for elliptic curves

of conductor greater than 219.

3.3. Proof of Theorem 8. In this section we investigate conditions on modular

parametrization Φk under which ∆N,k(τ) and Qk(τ), initially modular for Γk, are

modular for Γ0(N).

For S = ( a bc d ) ∈ SL2(Z), and a (meromorphic) modular form f(τ) of weight l,

we define the usual slash operator as f(τ)|lS := f(Sτ)(cτ + d)−l, where Sτ = aτ+b
cτ+d

.

Define T = ( 1 1
0 1 ) and A = ( 1 0

N 1 ).

Lemma 10. Group Γ0(
k
2
N) is generated by Γk and T , while Γ0(N) is generated by

Γ0(
k
2
N) and A.

Proof. To prove the first statement, let ( a bc d ) ∈ Γ0(
k
2
N). Then gcd(a, k

2
) = 1, and

there is r ∈ Z such that ar ≡ −b mod k
2
. Then ( a bc d )T

r ∈ Γk = Γ0(
k
2
N) ∩ Γ0(k

2
), and

the claim follows.
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Second statement is proved analogously.

□

Therefore, to prove that ∆N,k(τ) and Qk(τ) are modular for Γ0(N) it suffices to

show their invariance under the slash operators |T and |A.

Lemma 11. Matrices A and T normalize Γk.

Proof. Let ( a bc d ) ∈ Γk = Γ0(
k
2
N) ∩ Γ0(k

2
). Then k

2
N |c and k

2
|c, and ad ≡ 1 (mod k

2
).

In particular, since k
2
∈ {2, 3, 4, 6}, it follows that a ≡ d (mod k

2
).

Since
A−1( a bc d )A =

(
a+bN b

−aN−bN2+c+dN −bN+d

)
,

T−1( a bc d )T =
(
a−c a+b−c−d
c c+d

)
,

the claim follows. □

For a prime p, define the Hecke operator Tp as a double coset operator Γk
(
1 0
0 p

)
Γk

acting on the space of cusp forms on Γk. Slash operators |A and |T correspond to

ΓkAΓk and ΓkTΓk (see Chapter 5 of [8]).

Define the Fricke involution |2B on S2(Γk) by the matrix B :=
(

0 − k
2

k
2
N 0

)
. Note

that |2B is the conjugate of the usual Fricke involution on Γ0(
k2

4
N). In particular, B

normalizes Γk, and |2B commutes with all the Hecke operators Tp, p ∤ k2

4
N . Hence,

fN,k(2τ/k)|2B = λk,NfN,k(2τ/k) for some λk,N = ±1.

Lemma 12. The following are true.

a)

fN,k(2τ/k)|2T = e4πi/kfN,k(2τ/k),

b)

fN,k(2τ/k)|2A = e−4πi/kfN,k(2τ/k).

In particular, |2A and |2B have order k
2
when acting on fN,k(2τ/k).

Proof. A key observation is that the Fourier coefficients of fN,k(τ) are supported at

integers that are 1 mod k
2
. This implies

fN,k(2τ/k)|2T = e4πi/kfN,k(2τ/k).

When k = 4 (and k = 12) this is a consequence of the general fact that af (2) = 0

whenever f(τ) =
∑
af (n)q

n is a newform of level divisible by 4 (see [13], p.29). In the

other three cases, fN,k(τ) is a modular form with complex multiplication by the ring of
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integers of Q(
√
−3) or Q(

√
−1), hence its Fourier coefficients afN,k

(p) are zero when p

is an inert prime (i.e. p ≡ 2 (mod 3) or p ≡ 3 (mod 4) respectively). Multiplicativity

of the Fourier coefficients then implies the observation.

On the other hand A = BT−1B−1, therefore

fN,k(2τ/k)|2A = (fN,k(2τ/k)|2B)|2T−1|2B−1 = (λk,NfN,k(2τ/k)|2T−1)|2B−1

= λk,Nλ
−1
k,Ne

−4πi/kfN,k(2τ/k).

□

Corollary 13. We have that

a) ∆N,k(τ) ∈ Sk(Γ0(N)),

b) ∆N,8(τ)
1/2|4A = −∆N,8(τ)

1/2 and ∆N,8(τ)
1/2|4T = −∆N,8(τ)

1/2,

c) ∆N,12(τ)
1/2|6A = −∆N,12(τ)

1/2 and ∆N,12(τ)
1/2|6T = −∆N,12(τ)

1/2.

We now recall some basic facts about Jacobians of modular curves. For more de-

tails see Chapter 6 of [8]. Denote by Jac(Xk) the Jacobian of Xk. We will view

it either as S2(Γk)
∧/H1(Xk,Z) (where γ ∈ H1(Xk,Z) acts on f(τ) ∈ S2(Γk) by

f(τ) 7→
∫
γ
f(τ)dτ), or as the Picard group Pic0(Xk) of Xk, which is the quotient

Div0(Xk)/Div
l(Xk) of the degree zero divisors of Xk modulo principal divisors. If x0

is a base point in Xk then Xk embeds into its Picard group under the Abel-Jacobi

map

Xk → Pic0(Xk), x 7→ (x)− (x0),

where (x)− (x0) denotes the equivalence class of divisors (x)− (x0) +Divl(Xk).

It is known that the parametrization Φk : Xk → Ek can be factored as

(7) Xk ↪→ Jac(Xk)
ψk−→ Ẽk

ϕk−→ Ek.

Here Xk ↪→ Jac(Xk) is the Abel-Jacobi map (for some base point x0 ∈ Xk), ϕk is

a rational isogeny, and Ẽk (together with ψk) is the strong Weil curve associated to

the newform fN,k(2τ/k) via Eichler-Shimura construction as follows.

Let Vk be a C-span of fN,k(2τ/k) ∈ S2(Γk), and define Λk := H1(Xk)|Vk. Restriction
to Vk gives a homomorphism ψk

Jac(Xk) → V ∧
k /Λk

∼= Ẽk.

Here V ∧
k /Λk is a one-dimensional complex torus isomorphic to the rational elliptic

curve Ẽk with the Weierstrass equation Ẽk : y
2 = x3 − g2(Λk)

4
x− g3(Λk)

4
.
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Let S be either A or T . Since by Lemma 11 S normalizes Γk, we can define the

action of S on Jac(Xk) in two equivalent ways: for ϕ ∈ S2(Γk)
∧/H1(Xk,Z) and

f(τ) ∈ S2(Γk) let S(ϕ)(f(τ)) := ϕ(f(τ)|2S), or for P = (x) − (x0) ∈ Pic0(Xk) let

S(P ) = (Sx) − (Sx0). Now Lemma 12 implies that the action of S on Jac(Xk)

descends to the automorphism of Ẽk of the order k
2
.

Recall that x and y are functions on Ek satisfying Weierstrass equation y2 = fk(x),

and that x(τ) = x ◦ Φk(τ) and y(τ) = y ◦ Φk(τ) are modular functions on Xk.

Proposition 14. Let S be either A or T . If Φ−1
k (O) is invariant under A and T ,

then

a)

x(τ)|S =

x(τ), if k = 4,

−x(τ), if k = 8.

b)

y(τ)|S =

y(τ), if k = 6,

−y(τ), if k = 12,

Proof. For P ∈ Ek, we define the S(P ) := ϕk(S(P̃ )) for any P̃ ∈ ϕ−1
k (P ). It is well

defined since S-invariance of Φ−1
k (O) implies the S-invariance of Ker(ϕk). We have

that ϕk(S(P )) = S(ϕk(P )), hence S is an automorphism of Ek.

Let x0 be a base point of Abel-Jacobi map in (7). Then x0 ∈ Φ−1
k (O), hence ϕk ◦ψk

maps (Sx0)− (x0) to O in Ek. In particular, for x ∈ Xk we have

(8) Φk(Sx) = ϕk ◦ ψk((Sx)− (x0)) = ϕk ◦ ψk((Sx)− (Sx0)) = S(Φk(x)).

Assume first that k = 4. Then j(E4) ̸= 0, 1728, and the automorphism group of E4

is of order 2 generated by (x, y) 7→ (x,−y). In particular x(S(P )) = x(P ), for every

P ∈ E4.

If k = 8, then S is an automorphism of order k
2
= 4 of Ẽk, hence j(Ẽk) = 1728,

and g3(Λ8) = 0. Moreover ϕk is isomorphism (defined over Q), which implies that S

is an isomorphism of order 4 of E8 as well. The automorphism group is generated by

(x, y) 7→ (−x, iy), hence x(S(P )) = −x(P ) for every P ∈ E8.

If k = 6 or 12, then j(Ẽk) = 0, g2(Λk) = 0, and ϕk is an isomorphism (defined over

Q). Therefore, S has order 3 on Ek if k = 6, and order 6 if k = 12. The automorphism

group is generated by (x, y) 7→ (e2πi/3x,−y), and in particular y(S(P )) = y(P ) if

k = 6, and y(S(P )) = −y(P ) if k = 12, for every P ∈ Ek.
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Now (8) implies

x(τ)|S = x(Sτ) = x(Φk(Sτ)) = x(S(Φk(τ))) and y(τ)|S = y(Sτ) = y(Φk(Sτ)) = y(S(Φk(τ))),

and the claim follows from the previous paragraph.

□

We need the following technical lemma. Recall that Qk(τ) := x(τ)∆N,k(τ)
4/k.

Lemma 15. If ∂N,k(Qk(τ)) ∈Mmer
6 (Γ0(N)), then Qk(τ) ∈Mmer

4 (Γ0(N)).

Proof. As in the proof of Proposition 3, we have that ∂N,k(Qk(τ)) =
k
4πi
x′(τ)∆N,k(τ)

4/k =
k
4πi

x′(τ)
x(τ)

Qk(τ). Let S be either A or T . Then (x(Sτ))′ = x′(τ)|2S, and the invariance of
x′(τ)
x(τ)

under S (hence under Γ0(N)) follows from the fact that x(τ) is an eigenfunction

for S, which follows from the proof of Proposition 14. □

Since Qk(τ) := x(τ)∆N,k(τ)
4/k, the Theorem 8 for k = 4 and 8 now follows from

a) and b) of Corollary 13 and a) of Proposition 14, while k = 6 and 12 case follows

from ∂N,k(Qk)(τ) = y(τ)∆N,k(τ)
6/k together with a) and c) of Corollary 13, b) of

Proposition 14 and Lemma 15.

4. Example

Let

f19,4(τ) =
∞∑
n=1

a(n)qn = q + 2q3 − q5 − 3q7 + q9 + · · ·

be a unique newform in S2(Γ0(76)), and denote by ∆19,4(τ) = f19,4(τ/2)
2 ∈ S4(Γ0(19)).

Set Γ =
(

1
2

0
0 1

)−1

Γ0(76)
(

1
2

0
0 1

)
. For τ ∈ H̄ we define

Ψ(τ) = πi

∫ τ

i∞
f(z/2)dz.

For γ ∈ Γ and τ ∈ H̄ , define ω(γ) := Ψ(γτ) − Ψ(τ). One easily checks that
d
dτ
ω(τ) = 0, hence ω(γ) does not depend on τ . Denote by Λ the image of Γ under ω.

By Eichler-Shimura theory Λ is a lattice, and Ψ(τ) induces a parametrization X :=

H/Γ → C/Λ. The complex torus C/Λ is isomorphic to E : y2 = x3− g2(Λ)
4
x− g3(Λ)

4
by

the map given byWeierstrass ℘-function and its derivative, z 7−→ (℘(z,Λ), ℘′(z,Λ)/2),

thus by composing these two maps we obtain a modular parametrization Φ : X → E.

One finds that generators ω1 and ω2 of Λ are

ω1 = 1.1104197465122 . . . , ω2 = 0.5552098732561 . . .+ 2.1752061725591 . . .× i.
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Moreover, g2(Λ) =
256
3

and g3(Λ) =
4112
27

, hence it follows from Proposition 3 that

Q(τ) = ∆19,4(τ)℘(Ψ(τ),Λ) = 1+
1

3

(
8q + 8q2 + 64q3 + 232q4 + 336q5 + 256q6 + 512q7 + · · ·

)
satisfies a differential equation

∂19,4(Q)
2 = Q3 − 64

3
Q∆2

19,4 −
1028

27
∆3

19,4.(9)

One finds that

GCD ({p+ 1− a(p) : p prime, p ≡ 1 (mod 76)}) = 1,

hence it follows from the special case of Drinfeld-Manin theorem (see Theorem 2.20

in [7]) that Ψ(τ) maps cusps of X to the lattice Λ, or equivalently that Φ maps cusps

of X to the point at infinity of E. Modular curve X has six cusps, and one can check

(for example by using software package Magma) that the degree of Φ is six, therefore

the conditions of Proposition 6 and Theorem 8 are satisfied, and we conclude that

Q(τ) ∈M4(Γ0(19)).
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